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Abstract—Smartphone users are installing more and bigger
apps. At the meanwhile, each app carries considerable amount
of unused stuff, called software bloat, in its apk file. As a result,
the resources of a smartphone, such as hard disk and network
bandwidth, has become even more insufficient than ever before.
Therefore, it is critical to investigate existing apps on the market
and apps in development to identify the sources of software bloat
and develop techniques and tools to remove the bloat. In this
paper, we present a comprehensive study of software bloat in An-
droid applications, and categorize them into two types, compile-
time redundancy and install-time redundancy. In addition, we
further propose a static analysis based approach to identifying
and removing software bloat from Android applications. We
implemented our approach in a prototype called REDDROID, and
we evaluated REDDROID on thousands of Android applications
collected from Google Play. Our experimental results not only
validate the effectiveness of our approach, but also report the
bloatware issue in real-world Android applications for the first
time.

Index Terms—software bloat; static analysis; Android; soft-
ware customization;

I. INTRODUCTION

Modern software development paradigms and practice help

developers build more complex software products than ever

before. On the other hand, it brings software bloat into

software. By definition, software bloat is the “results of adding

new features to a program or system to the point where the

benefit of the new features is outweighed by the impact on the

technical resources and complexity of use” [1], which is also

known as “bloatware”. To some extent, bloatware problem can

be seen as a disease of affluence in the software world. Most

software on contemporary markets suffers this problem more

or less.

In this paper, we investigate software bloat that would lead

to the rapid size increase of Android applications. Android

smartphones are widely used in our daily life. A large number

of Android applications that provide versatile functionalities,

as well as CPUs with more computation powers allow and en-

courage users to install more and larger Android applications

in their smart phones. At the meanwhile, as a considerable

amount of software bloat in the apk file of each installed

Android application, the resources of a smart phone, such as

the storage and network bandwidth, has become more and

more insufficient than before. Furthermore, software bloat in

Android applications may also bring in other security concerns

which are challenging to foresee. For example, large code

bases generally contain more (exploitable) vulnerabilities, and

they also provide a considerable amount of code components

that can potentially enable code reusing attacks. Hence, it is

critical to inspect the existing Android applications on the

market and applications in development to identify and trim

off software bloat.

Previous research on reporting and removing Android ap-

plication bloat has either different scopes comparing with our

work or incurs various limitations. Pugh [2] and Bradley et

al. [3] proposed new algorithms and approaches to better

compressing class files into a package. Xu [4] presented an

approach to finding reusable data structures. Specifically, by

identifying those data structures which share the same “shape”

but have disjoint lifetimes, this approach can reuse just one

data structure across all of these data structure reference sites.

Thus, we can reduce the code size by removing other instances

of the same data structure and reduce the performance penalty

by avoiding frequent initializations. Lint [5] is a tool that can

help Android developers remove those registered but unused

resources that located in the “Res” directory in an Android

project. It scans code and other resource files to detect if a

resource file is ever referred by its ID. It cannot optimize

those resources that do not have IDs. Some researchers [6],

[7] raised the approaches to removing unused methods from

Java bytecode. However, these approaches cannot be directly

adopted to Android application due to the unique application

organization and execution patterns of Android systems.

In this paper, we comprehensively inspect the software bloat

issue in Android applications. We categorize the sources of

Android application software bloat into two types, compile-

time redundancy and install-time redundancy. We further pro-

pose a fully automated approach to trimming off both types of

software bloat. Our approach is mainly based on static analysis

and program transformation.

For the compile-time redundancy, we statically construct an

overapproximate call graph for the Android application being

analyzed. Based on this call graph, we can remove the methods

and classes that are never used in this call graph. Our approach

overcomes several unique challenges in Android application

static analysis and call graph construction, including multiple

entries of an Android application, intensive usage of call backs,

and Android component life cycles. Our approach processes

reflections based on static string value analysis without the

aid of other information besides the application code. As

for the install-time redundancy, we discuss the presences and

solutions towards two pervasive redundancy sources, which are
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multiple Software Development Kits (SDKs), and embedded

Application Binary Interfaces (ABIs).

We have implemented our approach in a prototype called

REDDROID and evaluated REDDROID on more than 500 An-

droid applications from Google Play. We measured the impact

on code sizes, code complexity, reflection call sites, the size of

redundant SDKs, and the size of redundant embedded ABIs.

Our experimental results show that, by removing compile-time

redundancy solely, on average, around 15% of the original

application code can be trimmed off. For the applications

that have install-time redundancy caused by redundant SDKs,

another 20% of its original size can be trimmed off on average.

For applications that have install-time redundancy caused by

redundant embedded ABIs, we can trim off additional 7%

on average. If an application has all types of redundancy

mentioned above, then on average we can expect to reduce

its size by 42%. We report that each Android application in

our test set has on average 14.8 reflection call sites, and our

evaluation also shows that the distribution of usage frequency

of each reflective method is quite biased. Furthermore, we

report that code complexity, measured by a set of well-known

metrics, is also notably reduced.

In summary, we make the following contributions:

• We define and categorize the sources of software bloat in

Android applications.

• We propose an automated static approach to identifying

and removing those software bloats from Android appli-

cations.

• We have implemented our proposed approach into a

prototype called REDDROID. The experimental results

we reported not only validate the effectiveness of our ap-

proach, but also comprehensively depict the landscape of

bloatware issue in the Android application domain for the

first time. These results can help developers gain insights

about their pain points regarding application resource

consumption issue and better plan their optimization in

the future.

The remainder of the paper is organized as follows. Sec-

tion II provides our observations and insights regarding soft-

ware bloat issue in the Android application domain. Section III

describes the details of the our approach and how we imple-

mented it. We present the evaluation results in Section IV.

We discuss some interesting thoughts and future works in

Section V. We then present related work in Section VI and

conclude our paper in Section VII.

II. OBSERVATION AND INSIGHTS

A. Two Types of Redundancy

Android applications contain software bloat due to multiple

reasons. We categorize the software bloat into two basic

types, compilation-time redundancy and installation-time re-

dundancy. This categorization is based on the time when they

can be determined as redundancy.

1) Compile-time Redundancy: Modern software engineer-

ing rarely implements a software product from scratch. Devel-

opers are relying on different kinds of libraries and frameworks

to finish their jobs. Libraries usually are implemented for

a more general purpose, instead of the requirements from a

specific group of developers. For example, an cryptographic

library may contain the implementations of multiple crypto

algorithms. However, developers would mostly stick to only

one of them in their applications. In fact, it is very common

to see only one method from one class in a large library is

used by an application.

Java language compilation and runtime has neither “static

link” nor “dynamic link” in the terminology of standard

program compilation. After each class of Java source code

is compiled into bytecode, there is no static link process to

include a library into a monolithic executable file. Making a

jar file is simply a process of zipping every single class file in

the working directory into one package. During runtime, each

Java application runs in its own Java virtual machine. So two

Java applications cannot share one copy of a dynamic library

through memory mapping as executable files do. Accordingly,

current development practice is to include each library entirely

in the final software product delivery. Fig. 1a illustrates this

process. Gray box represents the code written by a developer

herself. Green bar and red bar in the gray box indicate two

method invocations from two classes, respectively. Used meth-

ods are highlighted from unused methods. When packaging

this application, the jars that contain the classes we referred

must be put in the build path of the application and packaged

with the application code entirely.

The unused code in the libraries comprises a major part

of software bloat in an application. The implementation of

application code determines which part of the library code

is used or not. Application code can be seen fixed after its

compilation. So we categorize the redundancy, such as unused

code, that can be decided by checking compiled code as

compilation-time redundancy.

2) Install-time Redundancy: The virtual-machine based

Java runtime enables all Java programs to “build once, run

everywhere”. This fact allows Java developers to release a sin-

gle version of their product for those heterogeneous platforms.

Besides bytecode, which is compatible to different platforms,

to run a Java software product also requires many other

files, including configurations, resource files, and binaries.

Developers still need to create multiple versions of those non-

bytecode files to meet the requirements of different platforms.

For example, an Android application may contain multiple

sets of figures to be compatible with different screen sizes

and scales. Another example is that some devices require

some additional SDKs which might be unnecessary on other

platforms.

Developers cannot foresee which platforms the applications

will be installed. However, when an application is installed on

a specific platform, all of those files that are created for plat-

form compatible issue will become redundancy immediately.

So the install-time redundancy refers to those files can be seen
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smart watch. Hence, an Android wear application that involves

on-line operations must consist of at least two parts, the mobile

phone components and its smart watch counterparts. A typical

installation process, in the circumstances that a user has a

mobile phone and a smart watch at the same time, will have the

following steps.1 First, a mobile phone will download an apk

file to its hard disk. Second, the installer on the mobile phone

will install the code running on mobile phones. Third, mobile

phone will inject a smaller apk file carried by the original apk,

which is usually named “android wear micro apk.apk”, to the

paired smart watch. However, if a user just has a mobile and

does not have a smart watch, which in fact is a more common

case, the entire apk will still be downloaded and kept on the

mobile phones as a whole, including the code for running on

a smart watch.

III. DESIGN AND IMPLEMENTATION

A. Architecture

Fig. 2 illustrates the architecture of REDDROID, which

consists of two major components, compile-time redundancy

remover and install-time redundancy remover. The tool takes

an Android apk file as its input and yields a leaner Android

apk file. Compile-time redundancy remover, as shown in the

middle part of Fig. 2, includes several components, which

are dummy main generator, call graph builder, reflection

solver, and code reducer. The dummy main method generator

generates a single entry point for static analysis. Call graph

builder statically builds a call graph for the whole Android

application. We also use call back information based on

Android framework analysis to enhance the results of call

graph builder. In addition, the reflection solver helps reinstate

some methods which are incorrectly removed due to reflective

calls back to the call graph. Based on a more accurate call

graph, code reducer will remove the methods and classes not

in the call graph. Each component in compile-time redundancy

remover responds to a challenging in Android application

static analysis. We will elaborate on each component in the

following subsections. Then with user information, install-time

redundancy remover will work on the application. We briefly

introduce how we build this component at the end of this

section. At last, we wrap up the leaner files into a new apk

file and sign it. This architecture gives an overall view of our

tool in a temporal order. Two removers are not necessarily to

execute in one run. There might be a time gap between the

running of two removers since installation can happen long

after we compile our program.

B. Call Graph

To obtain the information that which classes and methods

are used, we build a call graph for the given application.

Building an accurate call graph is undecidable, so we over

approximate this problem. In other words, in the context of

our research, we preserve the soundness of the call graph by

1Not all Android wear compatible applications use same way to carry smart
watch code in the same way, but most applications follow the pattern described
here.

ignoring its completeness. Soundness here is defined as all the

methods that are not included in a call graph is guaranteed

not being invoked. By ignoring completeness we mean some

methods that are included in a call graph may also never be

invoked. Considering the sizes of some applications are con-

siderable, we do not use some advanced but more expensive

call graph building algorithms [8], [9]. In our approach, we

use a more intuitive method based on Class Hierarchy Analysis

(CHA) [10] to build it.

More specifically, it first establishes class hierarchical in-

formation by traversing all the classes. All Java classes and

interfaces are inherited from java.lang.object Class.

So all inheritance relationship will converge into a directed

graph.2 To provide a quick service for the query from next

step on if there is a path between two vertexes (if one class

is the ancestor of the other one), we in addition compute the

transitive closure for all vertex pairs in the graph based on

simplified Floyed-Warshall algorithm [11].

Second, we traversed all call sites in an application. During

this process, we can obtain the method signature information

and the static type of the reference at a call site. But we cannot

precisely know what type or subtype of this object can be

at static time. Java subtype polymorphism allows runtime to

dynamically decide which version of method to call based on

the actual type of an object during run time (a.k.a. dynamic

dispatch). We assume that this method can be invoked by

the statically-analyzed static type or all subclasses that inherit

or overwrite this method. Thus we will add edges from the

call site to all versions of this method into the call graph

by querying the information generated in the previous step.

Our analyzed application starts from the DummyMain. So

similarly, all vertexes and edges comprise a directed graph

with a root.

C. Android Standard Lifecycle and Dummy Main

A major difference of Android applications, compared with

normal Java applications, is that Android applications do not

have a main method as its entry point. An android application

has multiple entry points. Due to the nature of mobile com-

puting environments and the design of the Android operating

system, Android application has a very unique execution

model compared with a desktop application with which we

are familiar.

An Android application consists of four types of compo-

nents. They are activities, services, content providers, and

broadcast receivers. Each component has the same standard

lifecycle. To implement a specific component, a developer

must extends a base class of that component and overwrites

a set of Android framework callbacks, such as onCreate,

onStart, onStop, and onDestroy. Then a component

can respond to the events of interested, like memory full, the

launching of a higher-priority application, or user navigation

2This directed graph is not a tree (it does resemble a tree though). In Java, a
class may implements multiple interfaces. This fact implies there are vertexes
having multiple parents in this graph, which contradicts with the definition of
a tree.
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Listing 1: Callback Example

1 public class MainActivity extends AppCompatActivity{

2 private Button btnOne;

3 @Override

4 protected void onCreate(Bundle savedInstanceState) {

5 super.onCreate(savedInstanceState);

6 setContentView(R.layout.activity_main);

7 btnOne = (Button) findViewById(R.id.btnOne);

8 btnOne.setOnClickListener(new OnClickListener() {

9 @Override

10 public void onClick(View v) {

11 anotherMethodInMainActivity();

12 }

13 });

14 }

......

}

Listing 2: Reflection Example

1 public void methodExample(String methodName){

2 Class<?> c = Class.forName("com.package.Demo");

3 Object demoInstance = c.newInstance();

4 Method m = c.getDeclaredMethod(methodName,

new Class<?>[0]);

5 m.invoke(demoInstance);

6 }

call graph construction process (§III-B) cannot capture those

reflective method invocations, hence some methods might be

incorrectly deleted if they are only triggered from call sites of

reflections.

Some previous works have proposed several ways to solve

reflections, including leveraging annotations from developers

and performing test suites. In this research, we tend to use

less information from external resources and take advantage

of the information carried by the program itself. Hence, we

use static analysis to reason the value sets of string variables

in the call sites of reflections. Considering Code listing 2

which contains two reflection call sites (line 2 and line 5), by

statically analyzing potential values of string literals passed to

the reflection call sites as parameters, we can reason callees of

each reflection call site and use this information to replenish

the call graph.

Strings can exist as different forms in a program. For

example, string at line 2 in the Code listing 2 is a constant

literal, and such constant literal is in general easy to handle.

On the other hand, reflection call site at line 5 takes a variable

of string type as the input, which reveals limited information of

potential callees at this call site without further analysis. The

major challenges of analyzing string variable are unwrapping

loops and solving method invocation contexts. In addition,

there exist lots of ways to split, concatenate, and manipulate

the values of strings. Precise string analysis requires us to

faithfully model those string operation semantics.

Our analysis is based on Violist, a general Java program

string static analysis framework [13]. This framework sep-

arates representation and interpretation of string operations,

and it provides an IR to represent string values or the string

operation data flow relationship. The framework will first

perform an intra-procedural analysis to calculate the method

summary for each method. Inside a method body, it will first

generate the string variable representation for all statements

outside loops. Then it treats each nested loop body as a region

and uses region-based analysis to generate string variable

representations. A string variable in a loop may either depend

on the value of a variable, which could be itself, in the previous

round of iteration or the same iteration. The framework will

not stop its recursively regional analysis until all string variable

dependency relationship has reached its fixed point and been

reduced to its simplest form. Then the framework will use the

method summary of each method to perform inter-procedural

analysis to achieve context sensitivity.

Next, interpretation part will parse the results of string

variable representation. For example, the constant literals “A”

and “B” connected by a plus sign can be represented as (+,

“A”, “B”). A function of interpretation component is to model

the semantics of operations like “+” and output result “AB”.

We extended the original interpretation part of the framework

to support the method signatures and semantics of string

operations used in our reflection analysis problem domain.

F. Sign the Customized Application

An Android application must be signed to run on Android

systems. The Android application sign process includes two

steps. First, a message digest is generated for each file in the

apk file of an application. Second, the developers or some

other people on behalf of the developers use the private key

to sign the message digest of every file in the application. If a

program has already been signed before it is customized, then

the program needs to be signed again to be runnable since

REDDROID will modify files in the apk of an application.

G. Implementation

We have implemented our approach in a prototype called

REDDROID. REDDROID is mostly written in Java and Unix

shell scripts. It includes a compile-time redundancy remover

written in Java and a installation-time redundancy remover

written in Unix shell scripts. Regarding compile-time redun-

dancy remover part, we rely on FlowDroid [14] to generate

dummy main method for analyzed Android applications. We

use Soot [15] to convert Dalvik bytecode into the Soot IR

Jimple. Our analysis and code modification is based on Jimple.

We use Apktool to reverse resource files in an apk file from

binary format back to human readable ASCII format.

Android application install-time redundancy remover con-

sists of two components, Android wear application redundancy

remover and redundant embedded ABIs remover. We use Unix

shell scripts to implement Android wear application install-

time redundancy remover. It first calls apktool to unzip the an-

alyzed apk file and decode resource files into its original form.

Then it removes android wear micro apk.apk from direc-

tory res/raw and android wear micro apk.xml from directory

res/xml. We then search all build files to identify and remove

the build targets which rely on android wear micro apk.apk

and android wear micro apk.xml. In addition, we search all

6







TABLE III: Reflection Call Sites

Method Name Call Sites Constants Variables
java.lang.Class: java.lang.Class forName 8.579 3.779 4.800
java.lang.ClassLoader: java.lang.Class loadClass 2.611 1,846 0.765
java.lang.Class: java.lang.reflect.Field getField 2.168 1.786 0.382
java.lang.Class: java.lang.reflect.Field getDeclaredField 1.077 0.828 0.249
dalvik.system.DexClassLoader: java.lang.Class loadClass 0.302 0.035 0.267
java.util.concurrent.atomic.AtomicIntegerFieldUpdater: java.util.concurrent.atomic.AtomicIntegerFieldUpdater newUpdater 0.042 0.042 0
java.util.concurrent.atomic.AtomicLongFieldUpdater: java.util.concurrent.atomic.AtomicLongFieldUpdater newUpdater 0.014 0.014 0
net.sourceforge.pmd.typeresolution.PMDASMClassLoader: java.lang.Class loadClass 0.014 0 0.014
org.codehaus.jackson.mrbean.AbstractTypeMaterializer$MyClassLoader: java.lang.Class defineClass 0.007 0 0.007
org.codehaus.jackson.mrbean.AbstractTypeMaterializer$MyClassLoader: java.lang.Class findLoadedClass 0.007 0 0.007
java.lang.ClassLoader: java.lang.Class findClass 0.004 0 0.004
Total 14.825 8.330 6.495

still limited. We downloaded all applications in the cate-

gory of ”Android Wear”. We analyzed those Applications

and identified 17 applications that explicitly contain an ”an-

droid wear micro apk.apk” in their apk files. We applied our

tool to all of those 17 applications. Table IV presents our

experimental results. Among all 17 applications, the lowest

reduced-original ratio is 49.42% which is from Wear Tip

Calculator. The application Weather Live Free has the highest

reduced-original rate, 95.18%. On average, after removing

android install-time SDK redundancy, the size of a customized

application will be 80.67% of its original size.

2) Install-Time Redundancy from Android Application em-

bedded ABIs: In this paragraph, we answer the research ques-

tions Q5 and Q6. We did experiments to compare the reduced

sizes and original sizes of Android applications that contain

redundant ABI. ARM architectures dominate mobile devices.

Among ARM architectures, ARMv7 is most pervasive. So in

our evaluation settings, we always try to keep ARMv7 ABI if

multiple ABIs are present. If ARMv7 ABI does not exist, we

turn to keep ARMv5 while we are deleting the rest.

Table V presents the proportions of applications that contain

redundant ABIs by different size groups. In total, we analyzed

4779 Android applications, among which 2041 applications

contain more than one type of ABIs. That is to say 42.71%

applications in our samples can be additionally customized.

We also calculated the data by application size groups. For

example, the applications that are in 3M group are larger than

2M and less than or equal to 3M. The applications that are

smaller than 1M has the highest proportion of application

containing redundant ABIs, which is 61.51%. We can also

observe a trend that larger applications have less redundant

ABIs.

Fig. 5 shows the size distribution of all 2041 applications

that can be customized. The vertical axis is the percentage of

the customized size divided by the original size. The horizontal

axis is the original size of an application. On average, after

customization, the reduced size is 93.37% of the original size.

V. DISCUSSION AND FUTURE WORK

A. Issues caused by multiple Android API levels

Android systems have different levels of APIs, from level

1 which is the oldest one to 25 which is the most recent one.

Those APIs are not always backward compatible. Some fea-

tures are only available on some higher level APIs. Compared

with iOS, Android ecosystem is more fragmented. Android

users are using many different Android systems which support

different levels of API. To bring a unified experience to all

users, developers can include some packages provided by

Google in the apk file. Those packages provide the implemen-

tation of some features that originally only available in some

versions of Android systems. If an application is installed on a

new version of Android system, those packages will be redun-

dant. Including these packages are not transparent to develop-

ers. For example, class android.app.Fragment is only

available to API levels higher than 22. If developers decide

they also want to support those old systems, they must explic-

itly use android.support.v4.app.Fragment which

is located in the package can be brought by the application

itself, instead of android.app.Fragment which is only

in Android framework. To optimize this case, we not only

need to remove the package, but also need to rewrite the class

declarations and package importing in application code. We

leave this part as one further work. The other issue we want

to call out is that our evaluation was not conducted on the

most recent Android application running environment. We will

iterate our tool to synchronize with the pace of Android API

update in the future.

B. Feature based Customization

Another future work is to perform feature based customiza-

tion towards an application. Jiang et al. [19], [20] discuss an

approach of feature-based customization over a Java program.

The approach is based on analyzing the call sites of some

framework APIs. The permissions in Android systems which

map to some specific Android framework APIs provide an

ideal handler to conduct feature optimization on Android ap-

plications. For example, by customizing application features,

we can abandon existing “all-or-nothing” permission protocols

with users. It is possible for users to only select part of

the permissions they allowed and still enjoy (part of) the

applications. It is also useful to enforce some policies for

some special groups like minors, military personnel, and the

employees working in the enterprise where some features (e.g.

video streaming) are disallowed.

C. Relationship with Other Android Application Compaction

Approach

There are a plenty of Android application code size re-

ducing approach based on packing and compressing. More
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software deobfuscation technologies [21], [22] can be applied.

Detailed investigation on software deobfuscation is out of the

scope of this paper.

VI. RELATED WORK

A. Static Analysis on Android Applications and Frameworks

Cao et al. [12] proposed a comprehensive approach to

analyzing all implicit control flow transitions (a.k.a callbacks)

through the Android framework. More specifically, by per-

forming backward data flow analysis starting from all methods

that can be overridden in user space on an overapproximated

call graph, a superset of all call backs and their registrations

can be reached. They implement this method into a tool

called EdgeMiner to augment the precision of existing static

analysis tools. FlowDroid [14] is a state-of-the-art static taint

analysis tool on Android applications. The on-demand analysis

algorithm allows their approach to achieve high precision

(context, flow, field, and object sensitive) with relatively low

cost. Octeau et al. [23] implemented Dare, a tool to retarget

Android Dalvik bytecode to Java bytecode. They present an

inference algorithm to investigate the lost information (e.g.

type information) during the process of transforming Java

bytecode to Dalvik code. Their approach is based on the Tyde

IR and 9 basic transformation rules. Dex2jar [24] is the other

widely used open-source tool to transform Dalvik code into

Java bytecode. Nimbledroid is a online tool to quickly profile

an Android application. It is capable of being integrated with

Continuous Integration (CI) process of an industry-strength

Android application development. PScout [25] and Stow-

away [26] are two static analyzers that map Android frame-

work APIs to Android permissions. PScout first checks per-

mission check points. Then it performs backward reachability

analysis to the Android framework APIs that triggered those

permissions checking. Intents sending and content providers

accessing are considered as two types of implicit permission

checking points. Undocumented Android framework APIs are

also included in their results. Apktool [27] is a tool to conduct

reverse engineering on Android applications. It can transform

the Dalvik code to classes in smali representation. In addition,

it can decode binary-based resource files back to its original

human-readable form. FernFlower [28] is a state-of-the-art

Java decompiler. It has rich command line options which

makes it easy to be embedded into scripts and existing tool

chains. FernFlower is the default Java decompiler of IntelliJ

integrated development environment.

B. String and Reflection Analysis

An approach to solving reflections in Java programs is to

extract the string values in call sites of reflective calls. Several

previous works proposed some methods to conduct string

analysis. Java String Analyzer (JSA) [29] is a static analyzer to

find the upper approximation values of given string variables

in a program. Its first step is to transform Java program into a

flow graph. An edge of this flow graph is a “def-use” chain in

the program. In second step, JSA works on the flow graph to

generate a regular expression to over approximate the values of

a given string. Li et al. [13] proposed a new general framework

to analyze string values in Java and Android program and im-

plement a tool called Violist. They introduced a new IR which

can be used to model string operations. By performing context-

sensitive interprocedural analysis, Violist better solves the

challenges, including scalability and string operations across

procedures. Shannon et al. [30] introduces an approach to

using symbolic execution to conduct string analysis. They take

advantage of automaton to represent abstract string symbols

in the symbolic execution. Bodden et al. [31] presents another

approach to taming reflections without depending on string

analysis. They implemented their approach into a tool chain

called TamiFlex. It first logs all reflection calls recorded during

runtime. Then it uses direct method call to “materialize” those

indirect reflective calls. Thus, those enriched Java programs

can be soundly processed by static analyzers. In the case that

a program needs to be transformed, TamiFlex can also help

dynamically reinsert off-line transformed classes back to the

running program.

C. Code and File Compaction Techniques

Pugh [2] proposes a better way to compress a group of Java

class files to reduce the total size of a package, such as a jar file

or an apk file. His optimization consists of three parts. First,

each class file is reorganized into a more compact format.

Second, he improved the compression algorithm. Third, he

made some information is shared across class files in a

package. Wagner et al. [32] takes a more aggressive step to

remove code from those “always-connected” devices. They

split code into a frequently used part known as hot code,

and an infrequently used part known as cold code. A running

device will only receive the hot code at the very beginning,

while the cold code still remains on a remote server. The

specific part of cold code will be transmitted to a running

device only when it is necessary. Several previous works [6],

[7] proposed some approaches to reducing sizes of Java

applications by removing its unused methods and classes. But

their approaches cannot be applied to Android applications.

Lint [5] is a tool to remove redundant registered resources from

an Android project. Registered resources are located in “Res”

directory of an Android project. Each registered resource has

a global unique ID, which can be directly referred by a static

field of class R. However, a large number of resources, such

as music, sprite-sheet-based images, animations, and movies

that are located in directory “Asset”, cannot be optimized by

this tool, since they are referred in the program by using their

relative path which is a string literal. The optimization for

these parts of resources will also depend on the string analysis

techniques discussed in this paper, which can be done in our

future work.

VII. CONCLUSION

In this paper, we present an approach to trimming compile-

time redundancy and install-time redundancy from Android

applications. We have implemented a fully automated tool

called REDDROID. Our experimental results show that
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TABLE VI: reflection patterns and our strategies

Reflection Pattern Strategy
unknownClass.knownMethod Keep all methods that have the name “knownMethodName” in any class.
unknownClass.knownField Keep all fields that have name the name “knownField” in any class.
knownClass.unknownMethod Do not change this class.
knownClass.unknownField Do not change this class.
unknownClass.unknownField (no such case in our data samples) Delete methods only, do not delete classes.
unknownClass.unknownMethod (no such case in our data samples) End alert to developers, our approach is unsound to this application.

REDDROID can reduce Android application size by around

15% on average via removing unused bytecode. Code

complexity, measured by a set of well-known metrics, is

also reduced significantly. REDDROID can also identify and

remove redundant Android wear SDKs, which can reduce the

size of related applications by another 20% on average. By

removing redundant embedded ABIs, the size of applications

can be reduced by additional 7% on average. If an application

has all three kinds of software bloat, in sum its size can be

reduced by around 42%. Overall, our evaluation results show

that our approach is effective on reducing both compile-time

redundancy and install-time redundancy. In addition, our

results depict the landscape of bloatware issue in the Android

application domain for the first time. The results we reported

can help developers better identify their pain point regarding

application resource consumption issue and better plan their

development and build process.
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